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Previous calculations [1] and a critical analysis of the interpretation of some experimental 
data [2, 3] are  verif ied and refined. A model is proposed that directly takes into account in the 
motion equations terms describing the interaction of the disturbance with turbulent oscillations. 
The advantages of such an approach in comparison with the use of turbulent viscosity models 
are  demonstrated. 

Interest  in the stability of turbulent flows has recently grown in connection with attempts to predict the 
averaged character is t ics  of turbulent flow based on stability properties [4-7]. The stability problem as of 
now has been solved only in a quasflaminar approximation, in which the interaction of the disturbance with 
fluctuations is not taken into account [5]. This is due to the absence of experimental data that would permit 
any given model describing such interaction to be accepted. A ser ies  of works by Reynolds and Hussain [1-3], 
in which original experiments and the f i rs t  calculations using models taking into account the interaction of a 
weak nonrandom signal from the turbulence for channel flow were performed, appeared in 1970-1972. 

A periodic perturbation (vibrating streaks near walls} was introduced in a given section of the channel 
and its downstream propagation was studied. A weak, nonrandom signal consisting of about 4% of the turbulent 
velocity fluctuations was isolated. Experiments were car r ied  out for four frequencies with a Reynolds num- 
ber (Re = 13,800) calculated according to the channel half-width and maximal velocity [2]. 

A spatial stability problem for turbulent flow to a linear approximation arose as a resul t  of this experi-  
ment. The exponential nature of signal attenuation was indicated by the validity of the linear approximation 
[2-3]. 

The disturbance equations have the form 

"\ i / J _  O<p> , t 02<vi> 0 ( v i v j  -~- vi  v i / ,  
e~ .i 0x1 c~x~ -; Re OxiOx j Oxj c~xj 
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where v i and p are the velocity and pressure disturbances, v~ n is the fluctuating velocity in undisturbed 

flow, and U i is averaged velocity. Brackets denote the ensemble average. 

The last term in the right side of Eq. (i) describes the interaction of the disturbance with the tur- 
bulent fluctuations. It is discarded in the quasflaminar approximation. This term was taken into account 
in models proposed in [i] by means of the effective turbulent viscosity. The solution was found in the form 

~v~)  = u  ~ (u)ei(--~ - ~,~, ( 2 )  

where x and y a re  coordinates a long and ac ros s  the channel, 0~ is a given frequency, and ~ is a complex 
eigenvalue. If the last  t e rm of Eq. (1) is represented  in this form, 

where ~'ij is the complex amplitude of the fluctuations of dis turbances of Reynolds s t r e s ses ,  an O r r - S o m -  
merfe ld  type equation [1] is obtained for the complex fluctuation amplitudes,  

- - ~ - / u v  -- a 

The last  two te rms  were d iscarded in previous [1] calculat ions and the number i /Re was replaced 
as compensation by (1/Re) + (1/Rein) , where Re m = (v/e) is tile turbulent Reynolds number calculated r e l a -  
live to turbuIent v i scos i ty  ~ (u is molecu la r  kinematic viscosity).  A compar ison of experimental  data to 
resul ts  of previously per formed [1] calculations demonstrated that the attenuation decrements  calculated 
in te rms  of the quasf laminar  model significantly exceed the experimenta[  values as wel[ as  those ca lcu-  
lated using models with turbulent v iscosi ty .  The latter resu l t  is somewhat unexpected, since it had been 
anticipated that a calculation for interaction of a disturbance with fluctuations would lead to stabilization. 
These calculations were therefore  checked. 

Several f i rs t  eigenvalues (numbered in increas ing order  of decrement) calculated using the quasi-  
laminar  model by means of the differentia[ pivotal compensation method [8] for w= 3 and Re = 13,800 a re  
represen ted  in Fig. 1 by c i rc les .  Figure  2 (curve 2) depicts the dependence of attenuation damping on f re-  
quency for  the f i rs t  mode. 

The eigenvalues can be divided into two c lasses  corresponding to near-axia l  and boundary modes.  
Boundary modes a re  charac te r i zed  by the fact that their  phase veIoci ty  decreases  and the cr i t ical  layer  
shifts towards the wall as frequency increases ,  whereas phase veloci ty  increases  with frequency and the 
cri t ical  layer  shifts towards the axis in near-axia l  modes.  It was clarif ied that not the f i rs t  mode, but the 
mode with number  g rea te r  than 30 that turned out to be the f i rs t  of the boundary modes had been calculated 
in [1] using a quas i laminar  model. 

Good agreement  with exper iment  using the quasi laminar  approximation can be expected in two eases,  
namely, for boundary modes under locality conditions [9], and for short  waves for a re la t ive ly  weak degree 
of turbulence. In both cases ,  the las t  t e rm in Eqs. (1) becomes insignificant.  In fact, if we add the last 
t e rm in the r ight  side of Eq. (1) and the last  t e rm in the left side, we obtain 

/__0 [(v, + q )  v, + (v, + vr) 
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or,  a f t e r  d i f ferent ia t ing  using the continuity equation, 

~ ( u ;  + ~ a,, a (u, + ~r) \ 
vj ) ~ + v~ 0~j / -  (3) 

The f i r s t  t e r m  in Eq. (3) is negligible in compar i son  with the second t e r m ,  which contains the ve loc i ty  g r a -  
dients ,  nea r  the wall ,  where  the ve loc i t i e s  a r e  low. When weak turbulence occu r s  in this region,  [grad Ux[ >> 
Igrad v~nl, so that  the influence of turbulence in insignif icant  and boundary modes  under  locali ty conditions 
[9] (Re~ ~ 1.5) will be reasonab ly  desc r ibed  by the quas i l amiua r  model .  The f i r s t  t e r m  is much g r e a t e r  
than the second in the case  of shor t  waves  nea r  the axis ,  but v m is negligible in compar i son  with U for  
weak turbulence in it, and the quas i l amina r  model  is again suitable.  In the case  of long waves  the second 
t e r m  in Eq. (3) becomes  substant ia l ,  and the quas i l amina r  approximat ion  cannot be c a r r i e d  out, which 
leads us to conclude that  i t  is  n e c e s s a r y  to use  the f i r s t  boundary mode  in o rde r  to compare  the calculat ion 
using the quas i l amina r  model  to exper iment .  But an ana lys i s  of p rev ious  [2, 3] data has  shown that only 
n e a r - a x i a l  modes  a r e  p r e s e n t  in an e x p e r i m e n t  on the s tabi l izat ion segment  and, consequently,  a c o m p a r i -  
son m u s t  be c a r r i e d  out in t e r m s  of n e a r - a x i a l  modes .  Here ,  the quas i l amina r  model yields substant ia l ly  
unders ta ted  attenuation d e c r e m e n t s ,  s ince [grad vml  >> [grad Ux[ n e a r  the axis ,  and the influence of the las t  
t e r m  in Eq. (3) again becomes  substant ia l .  If  this influence is taken into account,  there  is no meaning to 
consider ing the c r o s s - s e c t i o n a l l y  va r i ab l e  turbulent  v i s c o s i t y  and it can be rep laced  by a constant  inde- 
pendent of f requency under  local i ty  conditions for  nea r -ax ia l  modes ,  in which Re a ~ 0.2, by introducing, 
as  was done in [1], the effect ive turbulent  v i s c o s i t y  [9]. 

A model  of constant  turbulent  v i s c o s i t y  was designed in [1] for  e l y = 4 0 .  The f i r s t  mode was n e a r -  
axial .  Resu l t s  of these calcula t ions  were  conf i rmed  by us, but the compar i son  to exper imen ta l  data as 
well  as  the in te rpre ta t ion  of the l a t t e r  was  not sa t i s fac to ry .  Since some  au thors  [2, 3] could not i so la te  a 
unique mode,  the d e c r e m e n t s  obtained as  the c r o s s - s e c t i o n a l l y  mean  dec remen t s  or  r e l a t ive  to some max i -  
m u m  m o r e  l ikely r e f l ec t  in te rac t ion  of modes  than attenuation. 

The e x p e r i m e n t  demons t r a t ed  that  n e a r - a x i a l  modes  a r e  at tenuated leas t .  The f i r s t  mode,  calculated 
using the turbulent  v i s c o s i t y  model ,  a l so  turned out to be nea r -ax ia l .  It  would the re fo re  be of in te res t  for  
the compar i son  to isola te  the at tenuation d e c r e m e n t s  nea r  the axis .  An ana lys i s  of the cu rves  presented  in 
[3] demons t r a t ed  that  at tenuation d e c r e m e n t s  for  y / 6  = 0.1 (~ is the channel half-width and the dis tance y is 
counted off f rom the axis) a r e  r ea sonab ly  desc r ibed  by a constant  turbulent  ~r model  c / v = 4 0  for  
between 0.75 and 2.25 (cf. Fig. 2, curve  1). When co =3 an inc remen t  occu r s  at the point y/6 =0.1. That  is ,  
the d i f ferent  modes  ove r l ap  too s t rongly  and the data for  oJ = 3 should not be taken into account.  It r e m a i n s  
unc lea r  why it  is n e c e s s a r y  to se t  e /v  = 40 s ince e / v  = 80 under  these conditions, accord ing  to some data [10]. 

The signal  at tenuation p rob lem for  turbulent  flow is compl ica ted  by the fact  that a d is turbance i m -  
pl ies  a s t aggered  p roce s s .  The ene rgy  of a s ignal  with a p reas s igned  f requency is t r ansmi t t ed  to other 
f requencies .  An exac t  solution r equ i r e s  that  we find each of the resu l t ing  ha rmonics  and de te rmine  the 
s t aggered  p r o c e s s  i tself ,  which as ye t  cannot  be done. Our p rob lem is to study the behavior  of a signal of 
the initial  f requency.  The influence of turbulence on it will only ef fec t ively  be taken into account.  If this 
is poss ib le ,  the given influence will be such that the motion equations p e r m i t  a ha rmonic  solution. This 
impl ies  f i r s t ,  tha t  the s imula ted  t e r m  be l inear  re la t ive  to d is turbance  veloci ty ,  

< viv~ + v'~vi> = v, wj -t- vl wi, (4) 

and, secondly,  the v e c t o r  w, which has the meaning  of mean  ve loc i ty  and which mus t  be de te rmined  only 
by the ave r aged  c h a r a c t e r i s t i c s  of turbulent  flow, m u s t  be independent of the homogeneous va r i ab les ;  in 
genera l ,  w well depend on al l  the momenta ,  though in const ruct ing it  we will l imit  ou r se lves  only to the 
f i r s t  and second momen ta ,  as a f i r s t  t r ia l  step; the ave raged  ve loc i ty  and Reynolds s t r e s s  t ensor  a r e  in- 
variant with it. 

A number of requirements must be imposed on the model of the last term in Eq. (i) 

0 m ,~x-~j < vw~ + vi vj> . (5) 

These  include: 1) I inear i ty  r e l a t ive  to d is turbance  velocity;  2) l inear i ty  re la t ive  to the intensi ty  of tu rbu-  
lent f luctuations;  3) nea rne s s  to the s imula ted  object  in o r d e r  of magnitude and p r e se rva t i on  of the de-  
c r ea s ing  o rde r  towards  the wall; 4) p r e s e r v a t i o n  of the o rde r  of different ia t ion and divergence;  5) locality; 
and 6) p r e s e r v a t i o n  of s y m m e t r y  p rope r t i e s .  
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We note that the subst i tut ion of Eq. (4) in (1) is equivalent  to the r e p l a c e m e n t  of U i by Ui+wi,  i .e. ,  
the v e c t o r  vr plays the ro le  of a given aux i l i a ry  veloci ty .  I t  will be independent of the a v e r a g e  veloci ty  ahd 
can the re fo re  be de t e rmined  only by the Reynolds s t r e s s  t ensor  component.  The v e c t o r  t l  may  turn out to 
have only nominal influence. The vec to r  w will be nea r  in o rde r  of magnitude to the s tandard  deviation of 

the turbulent  ve loc i ty  fluctuations. 

Only two invar iant  combinat ions of our ave raged  magni tudes ,  giving the n e c e s s a r y  o rde r  of  magn i -  
tude for  w, can be indicated: 

, / - ~  Uj 
wi = 7 t/<v~ v~ ? {-L~" (7) 

Here  3* is a numer ica l  coeff icient  on the o rde r  of unity. 

The r e q u i r e m e n t s  1-5 a r e  sa t i s f ied  when each of these  combinat ions  is subst i tuted in Eq. (5). R e -  
qu i rement  6 is sa t i s f ied  only by the combinat ion (6), s ince (7) does not sa t i s fy  the s y m m e t r y  condition. 

The numer i ca i  coeff icient  3/in Eq. (6) will be de te rmined  f rom the following concepts .  Since turbu-  
lence is nea r l y  homogeneous and i so t ropic  in the flow core ,  ((Vxm)2)~ <(v~n)2}~ ((Vzm)2>, we will requ i re  
that  Wx ~ f <  (vm}! >so that  y - ~ on the ax is .  

Substituting Eq. (4) in (1) and finding the solution in the f o r m  (2), we find the following equation for  
the complex fluctuation ampli tudes:  

i IV 
Ro - 2 '4 + + (8) 

Dis turbances  s y m m e t r i c  in y were  calculated for compar i son  with exper iment ,  so that the boundary 
conditions have the fo rm 

Uy = Uy ~ 0 on the wall, (9) 

u~ = ~,~' = 0 o~ th~ axis.  

The calcula t ions  were  c a r r i e d  out for  Eqs. (8) and (9), taking into account  Eq. (6) when 7=31/2. Averaged  
c h a r a c t e r i s t i c s  were  taken f rom exper imen ta l  data [2, 11]. The equation was solved by the different ial  
pivotal  condensation method [8]. 

It is evident f rom Fig.  1 (the f i r s t  e igenvalues for w = 3 a re  plotted by c ros se s )  that the model p r e -  
dicts  the exis tence  of s eve ra l  modes  with r a t h e r  s im i l a r  attenuation dec remen t s  and s i m i l a r  wave num- 
bers .  The f i r s t  modes  turn out to be nea r -ax ia l .  The model  r easonab ly  d e s c r i b e s  attenuation near  the 
axis  for  the expe r imen ta l ly  studied range  of f requencies  (cf. Fig.  2, cu rve  3). Attenuation dec remen t s  for  
one mode  in the expe r imen t  were  not dist inguished,  so that  the compar i son  was c a r r i e d  out in t e r m s  of 
data in the n e a r - a x i a l  zone. 

We note that the model  and model led  objects  a r e  near  in o rde r  of  magni tude,  so that the influence of 
a new t e r m  occurs  only whereve r  the quas i l amina r  approximat ion is inapplicable.  This is an advantage 
re la t ive  to turbulent  v i scos i ty  models  in which it is n e c e s s a r y  to introduce a dependence on frequency.  In 
pa r t i cu la r ,  the effect ive turbulent  v i s cos i t y  e will vanish  for  shor t  waves  in which the d is turbance  loses  
energy,  p re fe rab ly  by a v i scous  mechan i sm.  An a t t empt  has  been under taken [12] to provide a basis  for  
turbulent  v i s cos i t y  models  and to explain the corresponding dependence on frequency,  which will be com-  
plex and a r t i f i c ia l ,  s ince the introduction of turbulent  v i scos i ty  in place of the las t  t e r m  of Eq. (1) will not 
r e f l ec t  the nature  of the model led  object,  but s imply  rep lace  one m e c h a n i s m  for  ene rgy  Wansfer  by another .  

Unfortunately,  there  a r e  as yet  too few exper imenta l  data on which definitive conclusions could be 
drawn. It is ,  however ,  evident that d i r ec t  s imulat ion of a t e r m  descr ib ing  the in terac t ion  of a d is turbance 
with f luctuations,  re f lec t ing  a number  of impor tan t  p rope r t i e s  of the s imula ted  object ,  will al low us to de-  
s c r i be  the phenomenon r e l a t i ve ly  s imply  without introducing large  coeff icients  that  depend on frequency 
in a complex manner .  
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D E V E L O P M E N T  OF  Q U A S I H A R M O N I C  M O T I O N S  

O F  A G A S - S T R E A M L I N E D  L I Q U I D  F I L M  

L .  N .  M a u r i n ,  G.  ~.. O d i s h a r i y a ,  
a n d  A.  A .  T o c h i g i n  
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Quas iharmonic  wave motions of a thin liquid film flowing in a ver t i ca l  plane due to gravitational 
force ,  capi l la ry  forces ,  and a tangential s t r e s s  acting on the f i l m - g a s  boundary a re  considered.  
The region of exis tence  and spec t ra l  cha rac t e r i s t i c s  of the quasiharmonie  wave solutions in 
di f ferent  f i lm-mot ion r eg imes  (cocur ren t  and countercurrent)  a re  found. 

w Let  us cons ider  the motion of a thin film of a v iscous  liquid flowing in a ver t ica l  plane, under the 
influence of gravitat ional  and capi l lary  forces  and of s t r e s s e s  ar i s ing  on the film surface  as it is s t reaml ined  
by gas. As in [1, 2], we rep lace  the c losed combined motion problem of the gas and liquid (in the film) by mo-  
tion problems of a single film only. The effect  of the gas on the film in the problem thus reduced is descr ibed  
by specifying the tangential (and normal)  s t r e s s e s  on Lhe g a s - f i l m  boundary. The exact  form of these s t r e s s e s  
is unknown within the context of this procedure .  We assume,  as in [1, 2], that the tangential s t r e s s  on the film 
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